2,194 research outputs found

    Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles

    Get PDF
    Shallow clouds covering vast areas of the world's middle- and high-latitude oceans play a key role in dampening the global temperature rise associated with CO2. These clouds, which contain both ice and supercooled water, respond to a warming world by transitioning to a state with more liquid water and a greater albedo, resulting in a negative “cloud-phase” climate feedback component. Here we argue that the magnitude of the negative cloud-phase feedback component depends on the amount and nature of the small fraction of aerosol particles that can nucleate ice crystals. We propose that a concerted research effort is required to reduce substantial uncertainties related to the poorly understood sources, concentration, seasonal cycles and nature of these ice-nucleating particles (INPs) and their rudimentary treatment in climate models. The topic is important because many climate models may have overestimated the magnitude of the cloud-phase feedback, and those with better representation of shallow oceanic clouds predict a substantially larger climate warming. We make the case that understanding the present-day INP population in shallow clouds in the cold sector of cyclone systems is particularly critical for defining present-day cloud phase and therefore how the clouds respond to warming. We also need to develop a predictive capability for future INP emissions and sinks in a warmer world with less ice and snow and potentially stronger INP sources

    Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles

    No full text
    Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions

    Spatial and temporal CCN variations in convection-permitting aerosol microphysics simulations in an idealised marine tropical domain

    Get PDF
    A convection-permitting limited area model with periodic lateral boundary conditions and prognostic aerosol microphysics is applied to investigate how concentrations of cloud condensation nuclei (CCN) in the marine boundary layer are affected by high-resolution dynamical and thermodynamic fields. The high-resolution aerosol microphysics– dynamics model, which resolves differential particle growth and aerosol composition across the particle size range, is applied to a domain designed to match approximately a single grid square of a climate model. We find that, during strongly convective conditions with high wind-speed conditions, CCN concentrations vary by more than a factor of 8 across the domain (5–95th percentile range), and a factor of ∼ 3 at more moderate wind speed. One reason for these large subclimate-grid-scale variations in CCN is that emissions of sea salt and dimethyl sulfide (DMS) are much higher when spatial and temporal wind-speed fluctuations become resolved at this convection-permitting resolution (making peak wind speeds higher). By analysing how the model evolves during spin-up, we gain new insight into the way primary sea salt and secondary sulfate particles contribute to the overall CCN variance in these realistic conditions, and find a marked difference in the variability of super-micron and sub-micron CCN. Whereas the super-micron CCN are highly variable, dominated by strongly fluctuating sea spray emitted, the submicron CCN tend to be steadier, mainly produced on longer timescales following growth after new particle formation in the free troposphere, with fluctuations inherently buffered by the fact that coagulation is faster at higher particle concentrations. We also find that sub-micron CCN are less variable in particle size, the accumulation-mode mean size varying by ∼ 20 % (0.101 to 0.123 µm diameter) compared to ∼ 35 % (0.75 to 1.10 µm diameter) for coarse-mode particles at this resolution. We explore how the CCN variability changes in the vertical and at different points in the spin-up, showing how CCN concentrations are introduced both by the emissions close to the surface and at higher altitudes during strong wind-speed conditions associated to the intense convective period. We also explore how the non-linear variation of seasalt emissions with wind speed propagates into variations in sea-salt mass mixing ratio and CCN concentrations, finding less variation in the latter two quantities due to the longer transport timescales inherent with finer CCN, which sediment more slowly. The complex mix of sources and diverse community of processes involved makes sub-grid parameterisation of CCN variations difficult. However, the results presented here illustrate the limitations of predictions with largescale models and the high-resolution aerosol microphysics– dynamics modelling system shows promise for future studies where the aerosol variations will propagate through to modified cloud microphysical evolution

    Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic

    Get PDF
    In the Arctic, the aerosol budget plays a particular role in determining the behaviour of clouds, which are important for the surface energy balance and thus for the region’s climate. A key question is the extent to which cloud condensation nuclei in the high Arctic summertime boundary layer are controlled by local emission and formation processes as opposed to transport from outside. Each of these sources is likely to respond differently to future changes in ice cover. Here we use a global model and observations from ship and aircraft field campaigns to understand the source of high Arctic aerosol in late summer. We find that particles formed remotely, i.e. at lower latitudes, outside the Arctic, are the dominant source of boundary layer Aitken mode particles during the sea ice melt period up to the end of August. Particles from such remote sources, entrained into the boundary layer from the free troposphere, account for nucleation and Aitken mode particle concentrations that are otherwise underestimated by the model. This source from outside the high Arctic declines as photochemical rates decrease towards the end of summer, and is largely replaced by local new particle formation driven by iodic acid emitted from the surface and associated with freeze-up. Such a local source is consistent with strong fluctuations in nucleation mode concentrations that occur in September. Our results suggest a high-Arctic aerosol regime shift in late summer, and only after this shift do cloud condensation nuclei become sensitive to local aerosol processes

    Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.The Osmia bicornis whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession MPJT00000000. The RNAseq data generated in this study has been deposited in the Sequence Read Archive (SRA) under accession SRP065762. Accession numbers of the bee P450 genes manually curated in this study are shown in S5 Table. All other relevant data are within the paper and its Supporting Information files.The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides. To address this question, we sequenced the genome of the red mason bee, Osmia bicornis, the most abundant and economically important solitary bee species in Central Europe. We show that O. bicornis lacks the CYP9Q subfamily of P450s but, despite this, exhibits low acute toxicity to the N-cyanoamidine neonicotinoid thiacloprid. Functional studies revealed that variation in the sensitivity of O. bicornis to N-cyanoamidine and N-nitroguanidine neonicotinoids does not reside in differences in their affinity for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450 within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily, metabolises thiacloprid in vitro and confers tolerance in vivo. Our data reveal conserved detoxification pathways in model solitary and eusocial bees despite key differences in the evolution of specific pesticide-metabolising enzymes in the two species groups. The discovery that P450 enzymes of solitary bees can act as metabolic defence systems against certain pesticides can be leveraged to avoid negative pesticide impacts on these important pollinators.Biotechnology and Biological Science Research Council (BBSRC)Bayer AGEuropean Research Council (ERC

    The nature of ice-nucleating particles affects the radiative properties of tropical convective cloud systems

    Get PDF
    Convective cloud systems in the maritime tropics play a critical role in global climate, but accurately representing aerosol interactions within these clouds persists as a major challenge for weather and climate modelling. We quantify the effect of ice-nucleating particles (INP) on the radiative properties of a complex Tropical Atlantic deep convective cloud field using a regional model with an advanced double-moment microphysics scheme. Our results show that the domain-mean daylight outgoing radiation varies by up to 18 W m−2 depending on the bio- and physico-chemical properties of INP. The key distinction between different INPs is the temperature dependence of ice formation, which alters the vertical distribution of cloud microphysical processes. The controlling effect of the INP temperature dependence is substantial even in the presence of secondary ice production, and the effects of secondary ice formation depend strongly on the nature of the INP. Our results have implications for climate model simulations of tropical clouds and radiation, which currently do not consider a link between INP particle type and ice water content. The results also provide a challenge to the INP measurement community, since we demonstrate that INP concentration measurements are required over the full mixed-phase temperature regime, which covers around 10 orders of magnitude in INP concentration

    The temperature dependence of ice-nucleating particle concentrations affects the radiative properties of tropical convective cloud systems

    Get PDF
    Convective cloud systems in the maritime tropics play a critical role in global climate, but accurately representing aerosol interactions within these clouds persists as a major challenge for weather and climate modelling. We quantify the effect of ice-nucleating particles (INPs) on the radiative properties of a complex tropical Atlantic deep convective cloud field using a regional model with an advanced double-moment microphysics scheme. Our results show that the domain-mean daylight outgoing radiation varies by up to 18 W m−2 depending on the chosen INP parameterisation. The key distinction between different INP parameterisations is the temperature dependence of ice formation, which alters the vertical distribution of cloud microphysical processes. The controlling effect of the INP temperature dependence is substantial even in the presence of Hallett–Mossop secondary ice production, and the effects of secondary ice formation depend strongly on the chosen INP parameterisation. Our results have implications for climate model simulations of tropical clouds and radiation, which currently do not consider a link between INP particle type and ice water content. The results also provide a challenge to the INP measurement community, as we demonstrate that INP concentration measurements are required over the full mixed-phase temperature regime, which covers around 10 orders of magnitude

    A Novel Rho-Like Protein TbRHP Is Involved in Spindle Formation and Mitosis in Trypanosomes

    Get PDF
    Background: In animals and fungi Rho subfamily small GTPases are involved in signal transduction, cytoskeletal function and cellular proliferation. These organisms typically possess multiple Rho paralogues and numerous downstream effectors, consistent with the highly complex contributions of Rho proteins to cellular physiology. By contrast, trypanosomatids have a much simpler Rho-signaling system, and the Trypanosoma brucei genome contains only a single divergent Rho-related gene, TbRHP (Tb927.10.6240). Further, only a single RhoGAP-like protein (Tb09.160.4180) is annotated, contrasting with the.70 Rho GAP proteins from Homo sapiens. We wished to establish the function(s) of TbRHP and if Tb09.160.4180 is a potential GAP for this protein. Methods/Findings: TbRHP represents an evolutionarily restricted member of the Rho GTPase clade and is likely trypanosomatid restricted. TbRHP is expressed in both mammalian and insect dwelling stages of T. brucei and presents with a diffuse cytoplasmic location and is excluded from the nucleus. RNAi ablation of TbRHP results in major cell cycle defects and accumulation of multi-nucleated cells, coinciding with a loss of detectable mitotic spindles. Using yeast two hybrid analysis we find that TbRHP interacts with both Tb11.01.3180 (TbRACK), a homolog of Rho-kinase, and the sole trypanosome RhoGAP protein Tb09.160.4180, which is related to human OCRL. Conclusions: Despite minimization of the Rho pathway, TbRHP retains an important role in spindle formation, and henc

    Learning needs analysis to guide teaching evidence-based medicine: knowledge and beliefs amongst trainees from various specialities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We undertook a needs assessment exercise using questionnaire survey of junior doctors' knowledge and beliefs concerning evidence-based medicine (EBM) and critical literature appraisal, as this is a core competence in postgraduate medical education.</p> <p>Methods</p> <p>We surveyed 317 junior doctors in various specialities in the UK West Midlands Deanery. Using validated questionnaires we compared the needs of different trainee groups. Results overall were internally consistent (Cronbach's alpha 0.929).</p> <p>Results</p> <p>Respondents' generally felt that they had poor training in EBM (Mean score 2.2, possible range 1 – 6) and that they needed more education (Mean score 5.3, possible range 1–6). Male trainees felt more confident at evaluating statistical tests than females (p = 0.002). Female trainees considered patient choice above the evidence more often than males (p = 0.038). Trainees from surgical speciality felt more confident at assessing research evidence (p = 0.009) whereas those from medical speciality felt more confident at evaluating statistical tests (p = 0.038) than other specialities. However, non-surgical specialities tended to believe that EBM had little impact on practice (p = 0.029). Respondents who had been qualified for 11 years or over felt overall more confident in their knowledge relating to EBM than those who had been qualified less than 10 years. In particular, they felt more confident at being able to assess study designs (p = < 0.001) and the general worth of research papers (p = < 0.001). Trainees with prior research experience were less likely to find original work confusing (p = 0.003) and felt more confident that they can assess research evidence (p = < 0.001) compared to those without previous research experience. Trainees without previous research experience felt that clinical judgement was more important than evidence (p = < 0.001).</p> <p>Conclusion</p> <p>There is a perceived deficit in postgraduate doctors' EBM knowledge and critical appraisal skills. Learning needs vary according to gender, place of basic medical qualification, time since graduation, prior research experience and speciality. EBM training curricular development should take into account the findings of our needs assessment study.</p

    Very Cold Gas and Dark Matter

    Get PDF
    We have recently proposed a new candidate for baryonic dark matter: very cold molecular gas, in near-isothermal equilibrium with the cosmic background radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed in a fractal structure, resembling the hierarchical structure of the detected interstellar medium. We present some perspectives of detecting this very cold gas, either directly or indirectly. The H2_2 molecule has an "ultrafine" structure, due to the interaction between the rotation-induced magnetic moment and the nuclear spins. But the lines fall in the km domain, and are very weak. The best opportunity might be the UV absorption of H2_2 in front of quasars. The unexpected cold dust component, revealed by the COBE/FIRAS submillimetric results, could also be due to this very cold H2_2 gas, through collision-induced radiation, or solid H2_2 grains or snowflakes. The γ\gamma-ray distribution, much more radially extended than the supernovae at the origin of cosmic rays acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded compressed tar file. To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht
    corecore